### ICRP Draft Report: "Radiological Protection against Radon Exposure"

EARST Workshop 2013

Bouillon (Belgium), 29 May 2013

Jean-François Lecomte ICRP Committee 4



### ICRP TG 81 (Committee 4)

- Creation in November 2009
- Describe and clarify the application of ICRP 103
- And ICRP 101 (Optimisation)
- Remain in line with ICRP 65
- Take into account the Statement on radon and ICRP 115
- 6 months on the web for public consultation (December 2011 to June 2012)
- Challenged by new dose conversion factors (from C<sub>2</sub>)

### Membership

#### J-François Lecomte (France) Chair

Thomas Jung (Germany) Sergey Kiselev (Russia) Christophe Murith (Switzerland) Stephen Solomon (Australia) Per Strand (Norway) John Takala (Canada) Weihai Zhuo (China)

#### **Corresponding members:**

Renate Czarwinski, Tony Colgan (IAEA) Augustin Janssens (EC) Bill Long (USA) Shengli Niu (ILO) Ferid Schannoun (WHO)

**Secretary** Céline Bataille (France)

Critical Reviewers: Senlin Liu (China) + Werner Zeller (Switzerland) French mirror group

### Characteristics of radon exposure (1)

- Who is exposed, where, when and how?
  - At home (essentially), in workplaces and in mixeduse buildings
  - Global risk due to **low and moderate** concentrations
- Existing exposure situations
  - Source already exists and cannot be deleted nor modified (control only on the pathways)
  - Some situations already managed as planned exposure situations

### Characteristics of radon exposure (2)

- Similarities with other existing exposure situations
  - In particular with exposures in **contaminated territories** (ubiquity, variability, individual behaviour, self-help protective actions, many players, long-term strategies...)
- Many challenges
  - Public health dimension, lack of awareness, consistency with other policies, global risk versus highest exposures (equity), responsibilities, efficiency...



### Recommended approach

#### Simple and realist

- No problem without solution
- Same approach for smokers and non smokers
- Integrated
  - All buildings whatever their occupants
  - Mainly a public health dimension
- Graded
  - According to responsibilities
  - Taking into account specific situations (underground, spas)

### Ambitious

- Addressing both the highest exposures and the global risk
- Not just below the RL

### Before (ICRP 65, 103, Statement)

#### **Dwellings**

Existing exposure situationPublic exposure

> RL = 10 mSv/y

Derived RL = 300 Bq/m<sup>3</sup> or lower (7,000 h/y)

> ALARA

(new and existing dwellings)

Workplaces ≻RL = 10 mSv/y ≻Entry point = 1,000 Bq/m<sup>3</sup> (2,000 h/y)

Below 1,000 Bq/m<sup>3</sup> : ≻Existing exposure situation >Public exposure >ALARA

Above 1,000 Bq/m<sup>3</sup>:
➢ Managed as a planned exp sit
➢ Occupational exposure
➢ Relevant requirements (+DL)



# TG81 approach

#### All buildings

(dwellings, "common workplaces", mixeduse buildings)

- Existing exposure situations
- Public exposure
- > RL = 10 mSv/y
- Derived RL = 100 to 300 Bq/m<sup>3</sup>
- > ALARA (prevention + mitigation)
- Graded approach (action plan)
  - Specific for workplaces:
  - 1. Action on concentration
  - 2. Action on dose
  - 3. Occupational exposure

Qualitative criterion (national list)

#### Specific workplaces

(mines, spas...)
> Managed as a planned exp sit
> Occupational exposure
> Relevant requirements

Quantitative criterion (>10 mSvs/y)

NTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

## Application of the principles

#### • Justification of protection strategies

• Decision by national authorities (high cause of exposure, solutions do exist, improvement of the indoor air quality)

#### Optimisation of protection

• RL + Derived RL + Action plan (prevention-mitigation) + graded approach

#### Application of the dose limits

- Not a requirement for occupational exposure but a principle applicable only in planned exposure situations
- Already applied in some situations (U mines)
- Flexibility at national level (e.g. when occupational expo)

### National action plan

#### Prevention

- New buildings (building codes)
- Coherence with energy saving programmes

### Mitigation

• Existing buildings (reduction of exposure, many techniques)

#### • Crescendo of provisions

- Information, measurements, remediation, support (technical, financial...)
- Encourage self-help protective actions
- Priorities (zoning...), more or less enforcement, more or less consequences of failure

### Dose / Concentration

- RL for existing exposure situations
  - Typically in the band 1-20 mSv/y (ICRP 103)
  - 10 mSv/y for radon exposure (ICRP 65)
- ICRP 65 (1993) and ICRP 103 (2007)
  - Epidemiologic approach
  - 10 mSv/y ~ 600 Bq.m<sup>-3</sup>
- Statement (2009) and ICRP 115 (2010)
  - Dosimetric approach (a decision of the MC)
  - Risk ~ doubled; Evidence of radon risk < 200 Bq.m<sup>-3</sup>
  - 10 mSv/y ~ 300 Bq.m<sup>-3</sup>
- TG81
  - New dose coefficients for Rn (C2)
  - Risk x 2 in mines; x 4 in common workplaces (300 Bq.m<sup>-3</sup> ~ 18 mSv/y)
  - Keep 300 Bq.m<sup>-3</sup> as the international upper born + WHO approach

 $\Rightarrow Wait for C_2 publication \rightarrow Publication of TG81 report in 2014-15$ 

### Discussion (1)

#### • What means occupational exposure?

- When radon exposure to workers can reasonably be regarded as being the responsibility of the operating management (Pub 103 § 178)
- What about **workers** not occupationally exposed?
  - Managed as members of the public (Pub 65 § 86)
- Entry point:
  - Ambiguity of the concept (action level? reference level?)
  - 1,000 Bq.m<sup>-3</sup> is too high

## Discussion (2)

- Application of **dose limits** (controversial issue)
  - In all workplaces? Cf. responsibility of employer + consistency of the protection at work
  - But problems
    - With adventitious radon exposure (offices, shops, workshops...)
    - In mixed-use buildings (What dose limit? Public/Occupational?)
    - With added dose
    - With other sources of radiation
  - Flexibility makes sense
  - In any case the upper value of tolerable risk for occupational exposure should not be exceeded (100 mSv/5 years with a maximum of 50 mSv in a year)

### Discussion (3)

- Planned vs Existing? Transition?
  - Never planned ES but can be managed like
  - Notably when occupational exposure
  - 2 criteria for occupational exposure (qual + quant)
  - Keep some flexibility
- Smokers / non-smokers:
  - Recommendations for a mixed population
  - Smoking status difficult to take into account managing either buildings and individuals (smokers, never-smokers, past-smokers, passive smokers)
- Building materials:
  - Should be dealt with upstream (TG 76 NORM)

### Discussion (4)

- What if dose > 100 mSv?
  - 100 mSv/a is not a regulatory limit
  - Dialogue with stakeholders
  - Graded approach (convince better than enforce)
- Protection of children:
  - No specific recommendations
- Medical exposure to Rn
  - To be deleted (too controversial and not a matter for C4)
- Combination of exposure (as public + as worker)
  - Problem reduced by integrated approach (all buildings whatever their occupants)

### **Other points**

- Exposure to **thoron** is not a problem
- **Uranium mines**: waiting for the dose conversion factors from the Committee 2
- Approach expected to be applicable in all existing exposure situations



#### www.icrp.org



INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION