ICRP Draft Report:
“Radiological Protection against Radon Exposure”

EARST Workshop 2013

Bouillon (Belgium), 29 May 2013

Jean-François Lecomte
ICRP Committee 4
ICRP TG 81 (Committee 4)

- Creation in November 2009
- Describe and clarify the application of ICRP 103
- And ICRP 101 (Optimisation)
- Remain in line with ICRP 65
- Take into account the Statement on radon and ICRP 115
- 6 months on the web for public consultation (December 2011 to June 2012)
- Challenged by new dose conversion factors (from C2)
Membership

J-François Lecomte (France) Chair
Thomas Jung (Germany)
Sergey Kiselev (Russia)
Christophe Murith (Switzerland)
Stephen Solomon (Australia)
Per Strand (Norway)
John Takala (Canada)
Weihai Zhuo (China)

Corresponding members:
Renate Czarwinski, Tony Colgan (IAEA)
Augustin Janssens (EC)
Bill Long (USA)
Shengli Niu (ILO)
Ferid Schannoun (WHO)

Secretary
Céline Bataille (France)

Critical Reviewers: Senlin Liu (China) + Werner Zeller (Switzerland)

French mirror group
Characteristics of radon exposure (1)

- Who is exposed, where, when and how?
 - At home (essentially), in workplaces and in mixed-use buildings
 - Global risk due to low and moderate concentrations

- Existing exposure situations
 - Source already exists and cannot be deleted nor modified (control only on the pathways)
 - Some situations already managed as planned exposure situations
Characteristics of radon exposure (2)

- Similarities with other existing exposure situations
 - In particular with exposures in **contaminated territories** (ubiquity, variability, individual behaviour, self-help protective actions, many players, long-term strategies...)

- Many **challenges**
 - Public health dimension, lack of awareness, consistency with other policies, global risk versus highest exposures (equity), responsibilities, efficiency...
Recommended approach

- **Simple and realist**
 - No problem without solution
 - Same approach for smokers and non-smokers

- **Integrated**
 - All buildings whatever their occupants
 - Mainly a public health dimension

- **Graded**
 - According to responsibilities
 - Taking into account specific situations (underground, spas)

- **Ambitious**
 - Addressing both the highest exposures and the global risk
 - Not just below the RL
Before (ICRP 65, 103, Statement)

Dwellings
- Existing exposure situation
- Public exposure

- **RL = 10 mSv/y**
- Derived **RL = 300 Bq/m³ or lower (7,000 h/y)**
- **ALARA**

(new and existing dwellings)

Workplaces
- **RL = 10 mSv/y**
- **Entry point = 1,000 Bq/m³ (2,000 h/y)**

- **Below 1,000 Bq/m³**:
 - Existing exposure situation
 - Public exposure
 - **ALARA**

- **Above 1,000 Bq/m³**:
 - Managed as a planned exp sit
 - Occupational exposure
 - Relevant requirements (+DL)
TG81 approach

All buildings
(dwellings, “common workplaces”, mixed-use buildings)

- Existing exposure situations
- Public exposure
- \(RL = 10 \text{ mSv/y} \)
- Derived \(RL = 100 \text{ to } 300 \text{ Bq/m}^3 \)
- ALARA (prevention + mitigation)
- Graded approach (action plan)
 - Specific for workplaces:
 1. Action on concentration
 2. Action on dose
 3. Occupational exposure

Specific workplaces
(mines, spas...)

- Managed as a planned exp sit
- Occupational exposure
- Relevant requirements

Qualitative criterion (national list)

Quantitative criterion (>10 mSv/y)
Application of the principles

• **Justification of protection strategies**
 - Decision by national authorities (high cause of exposure, solutions do exist, improvement of the indoor air quality)

• **Optimisation of protection**
 - RL + Derived RL + Action plan (prevention-mitigation) + graded approach

• **Application of the dose limits**
 - Not a requirement for occupational exposure but a principle applicable only in planned exposure situations
 - Already applied in some situations (U mines)
 - Flexibility at national level (e.g. when occupational expo)
National action plan

- **Prevention**
 - New buildings (building codes)
 - Coherence with energy saving programmes

- **Mitigation**
 - Existing buildings (reduction of exposure, many techniques)

- **Crescendo** of provisions
 - Information, measurements, remediation, support (technical, financial...)
 - Encourage self-help protective actions
 - Priorities (zoning...), more or less enforcement, more or less consequences of failure
Dose / Concentration

- **RL for existing exposure situations**
 - Typically in the band 1-20 mSv/y (ICRP 103)
 - 10 mSv/y for radon exposure (ICRP 65)
- **ICRP 65 (1993) and ICRP 103 (2007)**
 - Epidemiologic approach
 - 10 mSv/y \(\sim \) 600 Bq.m\(^{-3}\)
- **Statement (2009) and ICRP 115 (2010)**
 - Dosimetric approach (a decision of the MC)
 - Risk \(\sim\) doubled; Evidence of radon risk < 200 Bq.m\(^{-3}\)
 - 10 mSv/y \(\sim\) 300 Bq.m\(^{-3}\)
- **TG81**
 - New dose coefficients for Rn (C2)
 - Risk \(\times 2\) in mines; \(\times 4\) in common workplaces (300 Bq.m\(^{-3}\) \(\sim\) 18 mSv/y)
 - Keep 300 Bq.m\(^{-3}\) as the international upper born + WHO approach

 \[\Rightarrow\] Wait for C2 publication \(\Rightarrow\) Publication of TG81 report in 2014-15
Discussion (1)

• What means occupational exposure?
 • When radon exposure to workers can reasonably be regarded as being the responsibility of the operating management (Pub 103 § 178)

• What about workers not occupationally exposed?
 • Managed as members of the public (Pub 65 § 86)

• Entry point:
 • Ambiguity of the concept (action level? reference level?)
 • 1,000 Bq.m\(^{-3}\) is too high
Discussion (2)

- Application of dose limits (controversial issue)
 - In all workplaces? Cf. responsibility of employer + consistency of the protection at work
- But problems
 - With adventitious radon exposure (offices, shops, workshops...)
 - In mixed-use buildings (What dose limit? Public/Occupational?)
 - With added dose
 - With other sources of radiation
- Flexibility makes sense
- In any case the upper value of tolerable risk for occupational exposure should not be exceeded (100 mSv/5 years with a maximum of 50 mSv in a year)
Discussion (3)

- Planned vs Existing? Transition?
 - Never planned ES but can be managed like
 - Notably when occupational exposure
 - 2 criteria for occupational exposure (qual + quant)
 - Keep some flexibility

- Smokers / non-smokers:
 - Recommendations for a mixed population
 - Smoking status difficult to take into account managing either buildings and individuals (smokers, never-smokers, past-smokers, passive smokers)

- Building materials:
 - Should be dealt with upstream (TG 76 NORM)
Discussion (4)

• What if dose > 100 mSv?
 • 100 mSv/a is not a regulatory limit
 • Dialogue with stakeholders
 • Graded approach (convince better than enforce)

• Protection of children:
 • No specific recommendations

• Medical exposure to Rn
 • To be deleted (too controversial and not a matter for C4)

• Combination of exposure (as public + as worker)
 • Problem reduced by integrated approach (all buildings whatever their occupants)
Other points

- Exposure to thoron is not a problem

- Uranium mines: waiting for the dose conversion factors from the Committee 2

- Approach expected to be applicable in all existing exposure situations